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Fig. 1. We propose an optimization framework to obtain perceptually pleasing error distribution in Monte Carlo animation rendering. The output of our
algorithm is a sample set spanning multiple image pixels and frames. Here we show an image of a 30-frame sequence rendered with 1 sample/pixel per frame.
We display a version of the animation filtered temporally using the kernel of Mantiuk et al. [2021], to mimic its perception at one time instant. On the right we
a show spatial (XY) crop and a spatio-temporal (XT) slice, along with the power spectra (DFT) of their corresponding error images. Our error distribution
exhibits better blue-noise properties than that of previous work [Wolfe et al. 2022], also reflected in the perceptual error metric reported on the left (see
Section 5). To fully appreciate these results, please refer to the supplemental video and HTML viewer.

Independently estimating pixel values in Monte Carlo rendering results in a

perceptually sub-optimal white-noise distribution of error in image space.

Recent works have shown that perceptual fidelity can be improved signif-

icantly by distributing pixel error as blue noise instead. Most such works

have focused on static images, ignoring the temporal perceptual effects of

animation display. We extend prior formulations to simultaneously consider

the spatial and temporal domains, and perform an analysis to motivate a

perceptually better spatio-temporal error distribution. We then propose a

practical error optimization algorithm for spatio-temporal rendering and

demonstrate its effectiveness in various configurations.

CCS Concepts: • Computing methodologies → Rendering; Perception.

Additional Key Words and Phrases: Monte Carlo rendering, stochastic sam-

pling, blue noise
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1 INTRODUCTION
Monte Carlo rendering numerically estimates light-transport in-

tegrals via random sampling which causes visible noise in the re-

sulting image. Much work has focused on combating this noise by

reducing the error in each pixel individually, e.g., via blue-noise

or low-discrepancy sampling [Singh et al. 2019]. Applying such a

pattern independently within each pixel improves the convergence

rate towards a noise-free result. However, the resulting white-noise

distribution of error over the image is visually sub-optimal.

It is well understood in digital half-toning literature that the hu-

man visual system (HVS) is less sensitive to image error that has

high-frequency, i.e., blue-noise, distribution. Georgiev and Fajardo
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[2016] achieved such distribution in Monte Carlo rendering by care-

fully optimizing a global sample pattern across image pixels. This pat-
tern yields higher perceptual fidelity by making the pixel estimates

as different from each other as possible. This improvement occurs

because the HVS applies a low-pass filter to the image [Chizhov

et al. 2022], and the negative pixel correlation effectively stratifies

the input to the low-pass convolution.

Following the work of Georgiev and Fajardo [2016], several prac-

tical methods have been devised to achieve high-quality blue-noise

distribution for static-image rendering [Heitz and Belcour 2019;

Belcour and Heitz 2021; Ahmed and Wonka 2020]. These are mostly

heuristically derived. An exception is the method of Salaün et al.

[2022] which leverages the perceptual framework of Chizhov et al.

[2022] to compute a small sample set, tiled over the rendered image.

Reusing the same blue-noise sample set across the frames of an

animation would maintain good blue-noise distribution, but the

noise pattern would remain static over the image. This so-called

shower-door effect [Kass and Pesare 2011] degrades visual quality

and disrupts the perception of motion. To address this problem,

Wolfe et al. [2022] made a first attempt at obtaining an error dis-

tribution for animation rendering that is blue-noise in both image

space and time. Lacking firm perceptual grounding, they extend

existing blue-noise-mask algorithms to optimize separately across

screen-space and time, which leads to visually suboptimal results.

In this paper, we combine the image-space model of Chizhov

et al. [2022] with a temporal perception model [Mantiuk et al. 2021]

to quantify perceptual error in animation rendering and motivate

the need for its high-frequency distribution in both space and time.

We also incorporate explicit temporal filtering such as temporal

anti-aliasing (TAA). Based on this spatio-temporal model, we adapt

the optimization method of Salaün et al. [2022] to obtain scene-

independent, precomputed sample sets. The resulting sample sets

allow for low-sample animation rendering with higher perceptual

fidelity than prior state of the art, thanks to the blue-noise distribu-

tion of error in both space and time. Figure 1 shows one frame of

an animation rendered with our optimization algorithm.

2 RELATED WORK
Our goal is to optimize Monte Carlo rendering error across pixels
as blue noise, in both image space and time. The survey of Singh

et al. [2019] discusses methods for achieving blue noise on one

integration domain (e.g., within a single pixel).

Blue-noise error distribution. Blue-noise distributions of image

error appear frequently in dithering or stippling applications [Ulich-

ney 1988]. The reason for their use is the lower sensitivity of the HVS

to high-frequency noise (“blue noise”), resulting in a less perceptible

error. High-frequency noise distribution corresponds to negative

correlation between pixel values in a neighbourhood. For Monte

Carlo rendering, Georgiev and Fajardo [2016] proposed a first practi-

cal approach that optimizes a blue-noise sample mask via simulated

annealing. Their approach is limited to low-dimensional integration

with few samples. Heitz et al. [2019] addressed these limitations by

optimizing the scrambling keys of a Sobol sequence [Sobol’ 1967].

Belcour and Heitz [2021] extended this optimization to a rank-1

lattice sampler. The method of Ahmed and Wonka [2020] scrambles

an image-space Sobol sequence according to a z-code ordering of

pixels to achieve an approximate blue-noise distribution. Salaün

et al. [2022] employed sliced optimal transport [Paulin et al. 2020]

to obtain a sample set optimized according to the perceptual model

of Chizhov et al. [2022]. Recently, Wolfe et al. [2022] proposed ex-

tensions to the void-and-cluster [Ulichney 1988] and Georgiev and

Fajardo’s [2016] algorithms to generate blue-noise sample masks for

animation rendering. All the aforementioned methods are a priori,
i.e., they compute scene-agnostic sample patterns. Such precompu-

tation is beneficial for practical application, though superior quality

can be achieved by tailoring the distribution to the specific image

being rendered. This can be done through a posteriori adaptation
of sample distributions, once the pixels have been sampled [Heitz

and Belcour 2019; Chizhov et al. 2022]. We extend the image-space

model of Chizhov et al. [2022] to the temporal domain and apply

the a priori optimization approach of Salaün et al. [2022] to acquire

a sample pattern for each animation frame.

Perceptual modeling and rendering. The contrast sensitivity func-

tion (CSF) is an important characteristic of the HVS that determines

the threshold contrast that is perceivable in spatio-temporal signals.

A vast majority of CSFmeasurements focus on spatial patterns [Daly

1993; Barten 1999; Wuerger et al. 2020], and the resulting CSFs are

modeled by a family of band-pass filters whose parameters change

with luminance, color, and retinal eccentricity. Spatio-temporal CSFs

have also been derived [Kelly 1979; Daly 1998; Robson 1966; Man-

tiuk et al. 2022], where temporal sensitivity [de Lange 1958] can be

explained by sustained and transient temporal channels dedicated

to processing slowly and quickly changing signals [Burbeck and

Kelly 1980; Hammett and Smith 1992; Mantiuk et al. 2021]. The

so-called window of visibility [Watson 2013; Watson and Ahumada

2016; Watson et al. 1986] is an example of such spatio-temporal CSF

modeling. The window of visibility approach accounts for spatio-

temporal signal processing and sampling that are inherent to any

imaging pipeline. In rendering applications, such spatio-temporal

CSFs have been used to focus expensive computation on the most

visible regions only [Myszkowski et al. 1999; Yee et al. 2001]. In

this work, we reduce perceived rendering error by employing a

spatio-temporal CSF to optimize space-time sampling patterns.

Temporal anti-aliasing. Temporal anti-aliasing (TAA) combines

pixels across multiple frames to reduce noise [Shinya 1993; Schied

et al. 2017, 2018]. Such temporal filtering is simple and cheap, though

ghosting artifacts arise if the scene changes too rapidly. These can

be reduced via the use of motion vectors or other means of temporal

reprojection [Hanika et al. 2021]. Our method can optimize the per-

ceived screen-space error distribution of a TAA-filtered animation.

Bounding integration error. Quasi-Monte Carlo (QMC) integration

methods use deterministic sample sequences. These sequences are

carefully designed to minimize discrepancy which is a quality metric

used to bound integration error [Ermakov and Leora 2019]. Recent

work [Paulin et al. 2020] has shown an analogous error bound based

on the Wasserstein distance instead [Kantorovich and Rubinstein

1958; Villani 2008]. This bound has been extended by Salaün et al.

[2022] to perceptual error in single-image rendering. We further

extend their bound to our spatio-temporal setting.
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Table 1. Commonly used notations throughout the document.

Notation Description

𝑆𝑖 , S = {𝑆𝑖 } Sample set for frame 𝑖, sample set for entire frame sequence

𝑅𝑖 , R = {𝑅𝑖 } Raw render result at frame 𝑖, sequence of all raw results

𝑄𝑖 , Q = {𝑄𝑖 } Displayed image at frame 𝑖, sequence of all displayed images

𝐼𝑖 , I = {𝐼𝑖 } Ground-truth image at frame 𝑖, sequence of all ground truths

𝜖𝑖 , 𝜖 = {𝜖𝑖 } Perceptual-error image at frame 𝑖, perceptual-error sequence

𝑔s, 𝑔t Spatial perceptual kernel, temporal perceptual kernel

𝑔a Explicit temporal accumulation (TAA) kernel

𝜇 Sample distribution (typically uniform)

3 SPATIO-TEMPORAL PERCEPTUAL MODEL
Our method builds on the perceptual model of Chizhov et al. [2022],

which we extend to include the temporal model of Mantiuk et al.

[2021] as well as explicit filtering via temporal anti-aliasing (TAA).

Notation. Given a sequence Q = {𝑄𝑖 } of rendered images, we

aim to minimize their perceived error compared to the sequence of

corresponding references I = {𝐼𝑖 }. Each image is a function 𝑄𝑖 (𝑆𝑖 )
of the sample pattern 𝑆𝑖 that is used to render the 𝑖th frame of an

animation. We concisely express the sequence of rendered images

Q(S) as a function of the sequence of sample patterns. Table 1 lists

the most commonly used symbols throughout the paper.

Spatial perceptual error. We followChizhov et al. [2022] andmodel

spatial perceptual response as a convolution. Hence the perceived

error of the 𝑖th frame viewed individually,

𝜖𝑖 (𝑆𝑖 ) = 𝑔s ∗𝑄𝑖 (𝑆𝑖 ) − 𝑔s ∗ 𝐼𝑖 = 𝑔s ∗ (𝑄𝑖 (𝑆𝑖 ) − 𝐼𝑖 ), (1)

can be quantified by comparing the perceived image 𝑔s ∗𝑄𝑖 to the

perceived reference 𝑔s ∗ 𝐼𝑖 . Here, 𝑔s is an image-space Gaussian

kernel that approximates the human visual system’s (HVS) point

spread function (PSF) [Chizhov et al. 2022]. The error image 𝜖𝑖 (𝑆𝑖 )
then measures the error for each pixel in the 𝑖th frame.

Spatio-temporal perceptual error. The human visual system (HVS)

does not perceive each animation frame in isolation. Rather, it has

been observed that temporal perception can be also modelled as a

low-pass filter [Mantiuk et al. 2021; Burbeck and Kelly 1980; Ham-

mett and Smith 1992]. We incorporate temporal filtering with a

kernel 𝑔t into the spatial model (1):

𝜖 (S) = 𝑔t ∗ 𝑔s ∗ (Q(S) − I). (2)

Since both reference and rendered images are subject to temporal

perception, the convolution with this kernel is applied to both. Here,

𝜖 (S) denotes the sequence of per-frame error images. In our exper-

iments, we employ the kernel proposed by Mantiuk et al. [2021].

It is a sum of two components, a sustained kernel and a transient
kernel, plotted in the inline figure. The sustained kernel encodes
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Fig. 2. Spatio-temporal (𝑋𝑇 ) slices of the error-image sequence (leftmost
column) for white-noise (Uncorrelated), spatial-only blue-noise [Salaün
et al. 2022] (2D blue noise), and spatio-temporal blue-noise (Ours) sample
sets. The center two columns show the Fourier spectra of the error images
(center left) and our perceptual kernel (center right). The rightmost column
shows the product of these two (a.k.a. the perceptual error), i.e., the Fourier
spectrum of the error image convolved with the kernel. Our optimization
minimizes the error spectrum 𝜖 (bottom row) and pushes the error outside of
perceptible spatio-temporal frequency range (the window of visibility [Wat-
son et al. 1986]; more details in Section 3).

Temporal anti-aliasing. TAA methods [Yang et al. 2020] compute

pixel values as the weighted average of the current and previous

frames. Such explicit filtering can be included in our model by

expressing the image 𝑄𝑖 displayed at each frame as a convolution

of the raw rendering results 𝑅 𝑗 at all (past) frames: 𝑄𝑖 = [𝑔a ∗ R]𝑖 .
Substituting into Eq. (2), the error-image sequence becomes

𝜖 (S) = 𝑔t ∗ 𝑔s ∗ (𝑔a ∗ R(S) − I). (3)

In our experiments, we use an exponential moving average (EMA)

kernel𝑔a, with weights𝑔a ( 𝑗) = 𝛼 (1−𝛼) 𝑗 , for 𝑗 ≥ 0, where 𝛼 ∈ [0, 1)
is a smoothing parameter (we use 𝛼 = 0.2). Note here that the

perceptual kernels 𝑔s and 𝑔t are applied to both the image estimates

and the reference image, but the TAA kernel 𝑔a is applied only to

the raw image estimates.

Optimization objective. Our objective is then to find the sample

sequence S that minimizes the norm of the error-image sequence (3):

S′ = argmin

S
∥𝜖 (S)∥ . (4)

In our optimization algorithm, presented in the following section,

we use the 𝐿1 norm, i.e., we find the sample sequence that minimizes

the sum of absolute values of all error-image pixels over all frames.

Discussion. We illustrate the impact of spatio-temporal kernel

filtering in Fig. 2, which provides a visual representation of the

error image for three different methods, i.e., sample sequences S
(rows). The first column shows temporal slices of the raw error, i.e.,

3
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𝑞 = Q(S) − I, and the second column shows the power spectra of the

discrete Fourier transform (DFT) of those raw-error slices. The last

column shows theDFT spectra of the convolution of the error images

with our spatio-temporal perceptual kernel 𝑔 = 𝑔t ∗ 𝑔s (plotted in

the second last column). Assuming that the viewing conditions

and frame rate correspond to the kernels 𝑔s and 𝑔t, our spatio-

temporal kernel 𝑔 approximates the window of visibility [Watson

et al. 1986]. This window is defined in the frequency domain and

its size is determined by the cut-off spatio-temporal frequencies.

Signal outside the window is considered invisible (imperceptible). By

optimizing the sample sequence S to solve Eq. (4), we not only reduce
the magnitude of the spectrum, but also push the energy outside the

window of visibility as much as possible. This reduces the residual

perceived error for all visible spatio-temporal frequencies.

In summary, in this sectionwe have presented a perception-driven

model (3) to assess the spatio-temporal quality of a sample sequence.

Wemodel human perception by a series of convolutions, and (option-

ally) include explicit temporal filtering (TAA). In our main results

we use this objective for a priori sample optimization, as discussed

in the next section. Figure 5 shows that a posteriori optimization

can benefit from this formulation, too.

Similarly to prior work on spatial-only error optimization [Heitz

et al. 2019; Heitz and Belcour 2019; Chizhov et al. 2022], we assume

integrated (radiance) function to be locally smooth (Lipschitz con-

tinuous) in space and time. This smoothness assumption is essential

for achieving a desirable outcome in the optimization process. The

spatio-temporal CSF [Kelly 1979; Daly 1998; Mantiuk et al. 2022]

further supports our assumption since the HVS is mostly sensitive

towards low- to mid-frequency signals. In practice, this implies that

the sampling quality is less relevant in regions where the smooth-

ness assumption is not met.

4 A PRIORI OPTIMIZATION
Our optimization problem (4) is similar in structure to that of Chizhov

et al. [2022] who consider single-image optimization. This problem

can be tackled in a priori or a posteriori manner (see Section 2).

We focus on a priori optimization due to its higher practical value

of computing a sample set once that can be used on any scene.

To that end, we extend the method of Salaün et al. [2022] to our

spatio-temporal setting.

A priori methods assume that the ground-truth image is con-

stant [Georgiev and Fajardo 2016; Heitz and Belcour 2019; Belcour

and Heitz 2021]. We extend this assumption to the temporal domain.

Convolving I with the TAA kernel 𝑔a thus becomes a no-op that

allows us to simplify our objective function (3): we combine all

kernels into a single spatio-temporal kernel 𝑔:

𝜖 (S) = 𝑔s ∗ 𝑔t ∗ 𝑔a ∗ (R(S) − I) = 𝑔 ∗ (R(S) − I). (5)

In the a priori setting, both the raw sequence R(S) and reference

sequence I are unknown, preventing the exact minimization of the

error (5). Instead, we aim to minimize an upper bound of that error.

Perceptual-error bound. Under our perceptual model, the value

of the 𝑗 th pixel in the 𝑖th frame of the perceived raw sequence

𝑔 ∗ R(S) is an average of the responses of all samples, weighted

by the kernel 𝑔 centered at (𝑖, 𝑗). Salaün et al. [2022, Appendix D]

(a)𝑋𝑇 domain (b) Kernel selection (c) Filtering operation (d) 1D optimal transport
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Fig. 3. Visualization of how the gradients are estimated for our optimization.
Given the spatio-temporal (𝑋𝑇 ) space and the kernels (a,b), we randomly
threshold their convolution to select a subset of samples (c). The filtered
sample set is then projected to a random 1D slice to compute the 1D-
Wasserstein gradient (d). The process is repeated multiple times to obtain a
sufficiently low-noise gradient estimate.

derived a bound for the absolute error of weighted integral estimates,

based on filtered optimal transport. In our case their bound reads

|𝜖𝑖, 𝑗 (S) | ≤ 𝐿

∫
R
𝑊

(
S𝑔𝑖,𝑗>𝑧 , 𝜇𝑔𝑖,𝑗>𝑧

)
d𝑧. (6)

The bound assumes a smooth rendering function, i.e., the incident

radiance on the continuous image plane, with Lipschitz constant 𝐿.

It is an integral overWasserstein distances𝑊 between the optimized

sample distribution S and the target (uniform) distribution 𝜇; these

distributions are filtered to only include the mass at locations where

the kernel value exceeds the threshold 𝑧 [Salaün et al. 2022]:

S𝑔𝑖,𝑗>𝑧 = {𝑢 ∈ S | 𝑔𝑖, 𝑗 (𝑢) > 𝑧}. (7)

We use the 2-Wasserstein distance which is defined as

𝑊 (S, 𝜇) =
(

inf

𝛾 ∈Γ (S,𝜇)

∫
Ω2

∥𝑥 − 𝑦∥2 d𝛾 (𝑥,𝑦)
)1/2

. (8)

Here Γ(S, 𝜇) is the set of all possible transport plans between the

two distributions [Bonnotte 2013]. Since the regular Wasserstein

distance is difficult to compute, we further bound it via its sliced

variant which involves only easy-to-compute 1D Wasserstein dis-

tances [Pitié et al. 2005]:

𝑊 (S, 𝜇) ≤ 𝑆𝑊 (S, 𝜇) =
∫
S𝑑−1

𝑊

(
S𝜃 , 𝜇𝜃

)
d𝜃, (9)

where S𝜃 and 𝜇𝜃 are the projection of the sample set and the uni-

form density along the 1D line 𝜃 . We provide more details on the

Wasserstein error bound in Section 1 of the supplemental document.

To bound the 1-norm of our objective function (5), we sum the

error bounds Eq. (6) of all pixels 𝑗 in all frames 𝑖:

∥𝜖 (S)∥ =
∑︁
𝑖, 𝑗

|𝜖𝑖, 𝑗 (S) | ≤ 𝐿
∑︁
𝑖, 𝑗

∫
R

∫
S𝑑−1
𝑊

(
S𝜃𝑔𝑖,𝑗>𝑧 , 𝜇

𝜃
𝑔𝑖,𝑗>𝑧

)
d𝜃d𝑧. (10)

Gradient-descent optimization. We minimize Eq. (10) via stochas-

tic gradient descent, using Monte Carlo integration to estimate the

involved integrals. We found that the Adam optimizer works best for

our case, due to the sparse support of the kernels and the rather high

noise of the gradient estimates. Details on the gradient computation

can be found in supplemental Section 2.

4



Perceptual error optimization for Monte Carlo animation rendering SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Algorithm 1. Our spatio-temporal sample optimization.

1: function OptimizeSamples(𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 , 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒)

2: S = InitRandom() ← Initialize sample set

3: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = InitAdamOpimizer()

4: for 𝑡 = 1..𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 do
5: 𝑔 = 0
6: for𝑚 = 1..𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 do
7: 𝑘 = SelectRandomKernel(𝑀) ← Fig. 3b

8: 𝑠 = FilterSampleSet(S, 𝑘) ← Fig. 3c

9: 𝑔 += EvaluateSWGradient(s) ← Accumulate gradient

10: Update(𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 , 𝑔/𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒)
11: return S

The process is illustrated in Fig. 3. At each optimization step, we

first randomly select a kernel𝑔𝑖, 𝑗 (Fig. 3b). We then sample a filtering

threshold 𝑧 which yields a sample subset S𝑔𝑖,𝑗>𝑧 (Fig. 3c). Finally,

a random slice 𝜃 is sampled to estimate the gradient of the sliced

Wasserstein distance (Fig. 3d). This process is repeated multiple

times to reduce the variance. The resulting multi-sample gradient

estimate is then used to perform one gradient-descent update step.

Algorithm 1 summarizes these optimization steps.

5 RESULTS
We evaluate the rendering performance of our method by computing

ray-traced direct illumination with PBRTv3 [Pharr et al. 2016]. We

compare the results to the previous approach of Wolfe et al. [2022],

independent per-frame spatial-only blue noise [Salaün et al. 2022],

and the baseline of independent, white-noise sampling. Animations

were rendered at 60Hz. Rendering is done using 1 sample per pixel

unless stated otherwise.

We compute fixed-resolution spatio-temporal sample tiles, by

toroidally wrapping the kernels during the optimization to ensure

that they can be seamlessly tiled in space and time during rendering.

If a spatial or temporal kernel has theoretically infinite support,

we truncate it at the point where its values become negligible. We

observe that a tile needs to be at least an order of magnitude larger

than the truncated kernel to avoid tiling artifacts (supplemental,

Fig. 1). In our experiments, the kernel size is 7×7 pixels and 8 frames

wide (i.e., 7×7×8 pixels). We found that a tile size of 128×128×30
pixels achieves the best trade-off between optimization cost and

tiling artifacts. We use the same tile size for all methods.

We computed the blue-noise tiles of Wolfe et al. [2022] using their

public code. We slightly increased their spatial Gaussian kernel to a

standard deviation of 2.1 (from 1.9), to match the spatial kernel used

for all other methods. We used the public code of Salaün et al. [2022]

to generate 30 independently optimized 2D blue-noise sample sets.

To mimic temporal perception in a static image, the renderings

presented in the following are temporally pre-filtered with the ker-

nel of Mantiuk et al. [2021] (see Section 3). The visual quality of the

results is best appreciated by referring to the supplemental video

and HTML viewer.

For quantitative comparison, we compute the perceptual relative

mean squared error (pRelMSE), 𝜖
2

𝑖 (𝑆𝑖 )/(𝐼 2𝑖 + 0.01) , at the 𝑖th frame. That

is, we filter the rendered image and the reference according to our

Table 2. Perceptual error (pRelMSE) across different scenes. The numbers
are the ratio of the pRelMSE of the different methods compared to the
baseline of uncorrelated sampling; lower is better. Raw error values can be
found in the supplemental document. We compare the methods with and
without TAA. In both cases, and on every tested scene, our method achieves
the lowest perceptual error. We set the standard deviation of Gaussian
kernels to 𝜎 = 2.1; for Wolfe et al. [2022] we also report results with 𝜎 = 1.9

as used by them.

Scene Salaün et al. [2022] Wolfe et al. [2022] Ours
TAA no TAA TAA no TAA TAA no TAA

Chopper 0.61× 0.62× 0.69× (0.66×) 0.72× (0.69×) 0.48× 0.55×
Teapot 0.65× 0.63× 0.80× (0.63×) 0.78× (0.65×) 0.56× 0.58×
Modern Hall 0.90× 0.85× 0.98× (0.95×) 0.94× (0.91×) 0.87× 0.83×
Living room 0.87× 0.82× 0.89× (0.86×) 0.86× (0.82×) 0.84× 0.80×
Dragon 0.54× 0.52× 0.66× (0.62×) 0.67× (0.63×) 0.48× 0.51×
Veach MIS 0.87× 0.83× 0.99× (0.97×) 0.92× (0.90×) 0.72× 0.69×

model (3) and compute the relative MSE of the result for the desired

frame (16
th
frame, unless stated otherwise).

We apply our method to animation rendering with and with-

out temporal anti-aliasing (TAA). For our method we optimize on

sample set for each variant, tailored to the filter. Table 2 summa-

rizes our quantitative results across a diverse set of test scenes. It

shows the pRelMSE of our method and previous works [Salaün et al.

2022; Wolfe et al. 2022] relative to uncorrelated (i.e., white-noise)

spatio-temporal sampling. Across all scenes, our method consis-

tently achieves better results, both with and without TAA.

Direct viewing. Figures 1 and 6 show results for animations with-

out TAA using 1 sample per pixel. To aid interpretation of the results,

the figures display the discrete Fourier transform (DFT) of different

zoom-ins. Especially on the temporal slice in the bottom right of

Fig. 1, these show clearly where the improvements of our method

stem from: While the previous approach of Wolfe et al. [2022] ex-

plicitly optimizes for 2D blue noise in image space and 1D blue

noise along the temporal domain, our method optimizes samples for

an exact kernel, dictated by a perception model. Consequently, the

frequency distribution of the error with our method better matches

the filter, resulting in a lower perceived error.

Our algorithm can be used to optimize sample sets for any number

of samples per pixel. Figure 7 shows an example using four samples.

Compared to previous work, our approach achieves a better blue-

noise distribution also at higher sample counts.

Temporal anti-aliasing. The behavior with explicit TAA filtering

is similar to that under direct viewing. Again, our method is consis-

tently better than uncorrelated sampling, previous work [Wolfe et al.

2022], and independent 2D blue noise [Salaün et al. 2022] across

all test scenes (Table 2). Figure 9 shows the TAA (and perception)

filtered frames of two scenes. For our method, we compare two

different optimization objectives: our full model and a simplified

version where we left out the perception filter and only optimized

for TAA. Optimizing only for TAA still outperforms previous work,

but yields 5-10% higher perceived error than utilizing the full model.

This supports our hypothesis that optimizing for a more accurate

kernel yields best results.
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Table 3. Ablation test for different optimization objectives. On an anima-
tion with TAA we test sample sets optimized for three temporal kernels:
a symmetric Gaussian (standard deviation 2.1), an EMA TAA kernel, and
our full model incorporating the TAA kernel and the perception kernel of
Mantiuk et al. [2021]. The numbers are the relative reduction in perceived
noise (pRelMSE) compared to the method of Wolfe et al. [2022]; lower is
better. Raw error values can be found in the supplemental document. Lowest
error is achieved when the optimization is tailored to the full filter.

Scene Gaussian TAA Perception +TAA

Chopper 0.75× 0.75× 0.70×
Teapot 0.78× 0.76× 0.70×
Modern Hall 0.92× 0.90× 0.89×
Living room 0.97× 0.96× 0.95×
Dragon 0.79× 0.77× 0.72×
Veach MIS 0.77× 0.78× 0.74×

6 DISCUSSION
Impact of kernel shape. Our method differs from that ofWolfe et al.

[2022] in two main aspects: the model and the optimization process.

The approach of Wolfe et al. [2022] does not directly translate to

a kernel in our optimization framework, since they separate the

spatial and temporal dimensions. Therefore, to better understand

howmuch of our improvements are due to themodel, and howmuch

due to the optimization itself, we performed an ablation where we

optimized sample sets for kernels different from the one used for

final filtering.

Table 3 summarizes the results. We report the error values for

three different kernels: a symmetric Gaussian (standard deviation

2.1), the TAA kernel, and the full TAA and temporal perception

kernel [Mantiuk et al. 2021]. As expected, the best result is achieved

when optimizing for the full model. Since the TAA and Gaussian

kernels have similar shape, their results only differ by a few percent.

These results indicate that, while matching the overall shape of the

final kernel is important, exact match is not critical.

Note that all models in Table 3 yield lower error than the approach

of Wolfe et al. [2022]. This indicates that their separation into spatial

and temporal components, while helpful for convergence in their

optimizer, hampers the attainable quality.

Performance on the first frames. Our optimization assumes that a

sufficient number of past frames are available to apply the full tem-

poral kernel. This is not the case early in an animation, as shown

in Fig. 4. The figure compares our result with spatial-only blue

noise [Salaün et al. 2022] under environment-map illumination with

TAA filtering. In the first frame, spatial-only optimization yields

higher quality, since no temporal filtering can yet occur. In subse-

quent frames, our method performs better. This is also visible in the

DFT spectra (insets) where our method has fewer low-frequency

error components, i.e., a better blue-noise distribution.

We extend this analysis by comparing the evolution of perceptual

error with the number of frames. Figure 8 shows this evolution on

the Chopper, Dragon and Teapot scenes. The methods compared

are uncorrelated sampling, Salaün et al. [2022], Wolfe et al. [2022]

and ours. The results show that at the start of each curve, when few

OursOursSalaün et al. [2022]Salaün et al. [2022]

0.0027 (0.9×)0.0027 (0.9×)0.0030 (1×)0.0030 (1×)

S
a
l
a
ü
n
e
t
a
l
.

O
ur

s

Equilibrium state Frame 1 Frame 20

Fig. 4. Comparison between independent spatial-only optimization [Salaün
et al. 2022] and our method on an animation with TAA. The image on the
left is the 20th frame, the zoom-ins show the state at the 1st and 20th frame,
along with the DFT spectra of their error images. Spatial-only optimization
is much better in the first frame, where no temporal filtering occurs. Our
method shows better blue-noise quality once the steady state is reached.

frames are accumulated, spatial-only optimization performs best.

This confirms the results presented above. However, as the frames

accumulate and the equilibrium state is reached, our method obtains

the lowest perceptual error.

A posteriori optimization. A priori optimization is inherently lim-

ited in the achievable quality because the optimized sample set must

generalize to arbitrary scenes and importance-sampling transfor-

mations. A posteriori optimization can achieve better results, but a

truly practical method has yet to be found. To explore the quality

achievable by an a posteriori approach using our objective, we ex-

tended the method of Chizhov et al. [2022] to the temporal domain,

using our model. Specifically, we employ their “vertical” optimiza-

tion which selects one out of 15 candidate samples for each pixel, to

solve Eq. (4). We compare the result to our a priori optimization for

the same kernel on the Chopper scene in Fig. 5. Here, a posteriori

optimization yields an notable improvement of 60%. These results

indicate that further research on (practical) a posteriori methods is

worthwhile and can benefit from our formulation.

Optimization cost. Our sample sets need only be computed once

per filter kernel, number of integration dimensions, sample count,

and frame rate. Nevertheless, when multiple variations of these pa-

rameters are desired, computation cost may become a concern. Our

CPU implementation takes about 1–2 days to optimize one sample

set using 10k SGD steps with a mini-batch size of 4k. The theoretical

bottleneck is the computation of the 1D optimal transport, which re-

lies on an 𝑛 log(𝑛) sorting operation per gradient-descent iteration.

In practice, computation speed is significantly affected by accessing

sample subsets that are scattered in memory. Furthermore, the use

of a small subset of samples with non-zero gradients per step neces-

sitates the use of large batch sizes, resulting in higher computation

costs. Despite these challenges, parallelism can be harnessed within

the algorithm: across different projections of the mini-batch on the

CPU, also for sorting on the GPU. We believe that, with further

performance improvements, e.g., using a pre-optimized set as ini-

tialization, computation time can be reduced to at most a few hours

per sample set.

6



Perceptual error optimization for Monte Carlo animation rendering SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

A posteriori optimizationA posteriori optimizationA priori optimizationA priori optimization

0.00480.00480.00770.0077

A posteriori optimizationA posteriori optimizationUncorrelated samplingUncorrelated sampling

0.00580.00580.03330.0333

Fig. 5. Our theory can be used to extend a posteriori perceptual error optimization [Chizhov et al. 2022]. Here we show improvement in direct-illumination
(2D sampling) on the left and path tracing rendering (10D sampling) on the right. Unlike a priori methods, a posteriori optimization is not sensitive to
sampling dimensionality and achieves higher quality thanks to image-based optimization. All images show the 16th animation frame filtered with the temporal
perception kernel of Mantiuk et al. [2021], along with the corresponding pRelMSE values.

Limitations. The signal-constancy assumptions made by a priori

perceptual error optimization hold only locally and approximately.

In regions of large signal variation, e.g., thin shadow penumbrae

(spatially) or fast-moving objects (temporally), perceptual error in-

creases. Temporal variations could be addressed via the use of mo-

tion vectors, which we leave for future work.

A significant limitation of a priori optimization methods lies in

their applicability to more complex rendering algorithms, such as

path tracing. This is due to the increased sampling dimensionality

and the variation of the rendering function with longer paths. A

priori optimization is not sensitive to dimensionality and can tailor

the sampling to the rendered image.

The capacity of the error distribution to influence perceptual

quality is also contingent upon the noise level present in the scene.

When the noise level is low, the impact of the error distribution on

perceptual quality diminishes.

Future work. In this work we use a basic spatio-temporal CSF

model [Chizhov et al. 2022; Mantiuk et al. 2021], but our framework

(Section 3) supports arbitrary filters. Exploring more advanced CSF

models [Mantiuk et al. 2022] that account for display luminance

(e.g., darker displays increase the HVS tolerance for contrast errors

and flickering, while saving energy) and foveation (sparser sam-

pling with increasing retinal eccentricity) could be a way to further

improve visual quality. A hold-type blur of moving objects that

arises in the HVS as a function of display persistence and refresh

rate [Jindal et al. 2021] can also lead to increasing the HVS toler-

ance to rendering error. One could specifically optimize sampling

by considering content-dependent visual masking [Mantiuk et al.

2021], e.g., by precomputing a texture-specific sample set.

Another promising future direction would be to find a practical

approach for a posteriori optimization of sample patterns. Ideally,

such a method would work in real-time applications and complex

light-transport algorithms.

The relationship between sample optimization and denoising is

another interesting topic. As noted by Heitz and Belcour [2019]

and Chizhov et al. [2022], high-frequency error distributions can

afford higher fidelity when denoising via low-pass filtering; existing

denoisers may need adjustment or retraining to optimally handle

such input. We believe that our high-frequency spatio-temporal

distribution paves the way for devising improved, correlation-aware

interactive denoising methods.

7 CONCLUSION
We have introduced a general model and a practical method for

spatio-temporal sample optimization for Monte Carlo animation

rendering. Our method accounts for both perceptual and explicit

temporal filtering. To achieve practicality, we extend an existing a

priori optimization method to support our spatio-temporal model.

As a result, we can precompute scene-agnostic sample sets that

yield considerable improvements over previous work in terms of

perceived noise quality.
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Uncorrelated sampling Salaün et al. [2022] Wolfe et al. [2022] Our perceptual filter
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Fig. 6. Comparison of the 16th animation frame, without TAA. To mimic human perception, for display we apply the temporal filter of Mantiuk et al. [2021].
We compare our method to uncorrelated sampling and the methods of Salaün et al. [2022] and Wolfe et al. [2022]. The insets in each crop show the DFT of the
error image, and the numbers on the left are the pRelMSE of each method (lower is better). We achieve visible improvements over previous work on all scenes,
and a more pronounced blue-noise distribution in the DFT spectrum. Please refer to the supplemental HTML viewer to better appreciate the differences.

Uncorrelated sampling Wolfe et al. [2022] Our perceptual filter

UncorrelatedUncorrelated Wolfe et al. [2022]Wolfe et al. [2022] Ours perceptualOurs perceptual

0.0094 (1×)0.0094 (1×) 0.0093 (0.99×)0.0093 (0.99×) 0.0062 (0.66×)0.0062 (0.66×)

Fig. 7. Rendering comparison on the 10th animation frame, rendered with 4 samples per pixel. To mimic human perception, for display we apply the temporal
filter of Mantiuk et al. [2021]. We compare our method to uncorrelated sampling and the method of Wolfe et al. [2022]. The insets in each crop show the
DFT of the error image, and the numbers on the left are the pRelMSE of each method (lower is better). Our method preserves the desirable blue-noise error
distribution also at higher sample counts.
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Fig. 8. Perceptual error across the first 30 animation frames (without motion) for three scenes rendered with TAA. The error initially reduces for all methods,
as more frames are included in the temporal filter; until frame 15, where the full support of the kernel is reached. Spatial-only blue noise [Salaün et al. 2022]
performs best for the first few frames, where not much temporal filtering yet occurs. Our optimization achieves the lowest perceptual error at the steady state.

Wolfe et al. [2022] Ours TAA Ours
TAA+perceptual

Wolfe et al. [2022]Wolfe et al. [2022] Ours TAAOurs TAA Ours TAA+perceptualOurs TAA+perceptual

0.0171 (1×)0.0171 (1×) 0.0133 (0.78×)0.0133 (0.78×) 0.0126 (0.74×)0.0126 (0.74×)

0.0043 (1×)0.0043 (1×) 0.0033 (0.77×)0.0033 (0.77×) 0.0030 (0.71×)0.0030 (0.71×)

Wolfe et al. [2022]Wolfe et al. [2022] Ours TAAOurs TAA Ours TAA+perceptualOurs TAA+perceptual

Fig. 9. Rendered images with temporal anti-aliasing (TAA). We mimic human perception by applying the temporal filter of Mantiuk et al. [2021]. As an
ablation, we compare our method optimized only for the TAA kernel (center) and the full result (right) to previous work. We provide 2 crops for each scene
associated with the DFT of the error in the region. The numbers at the bottom are the pRelMSE for 16th frame for each method, lower is better. Optimizing
only for TAA already performs well, but optimizing for both TAA and perception yields best results.
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